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Equations applicable to finite-difference time-domain �FDTD� computation of infrasound
propagation through an absorbing atmosphere are derived and examined in this paper. It is shown
that over altitudes up to 160 km, and at frequencies relevant to global infrasound propagation, i.e.,
0.02–5 Hz, the acoustic absorption in dB/m varies approximately as the square of the propagation
frequency plus a small constant term. A second-order differential equation is presented for an
atmosphere modeled as a compressible Newtonian fluid with low shear viscosity, acted on by a
small external damping force. It is shown that the solution to this equation represents pressure
fluctuations with the attenuation indicated above. Increased dispersion is predicted at altitudes over
100 km at infrasound frequencies. The governing propagation equation is separated into two partial
differential equations that are first order in time for FDTD implementation. A numerical analysis of
errors inherent to this FDTD method shows that the attenuation term imposes additional stability
constraints on the FDTD algorithm. Comparison of FDTD results for models with and without
attenuation shows that the predicted transmission losses for the attenuating media agree with those
computed from synthesized waveforms. © 2008 Acoustical Society of America.
�DOI: 10.1121/1.2959736�
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I. INTRODUCTION

Ever since pressure fluctuations generated by the 1883
explosion of Krakatoa were recorded on barometers through-
out the US, Europe, and Russia �Bass et al., 2006�, it has
been understood that volcanoes excite infrasonic waves—
subaudible acoustic energy—detectable at ranges from hun-
dreds to thousands of kilometers. Over the years, pressure
waves generated by both earthquakes and volcanoes have
been detected at distances of hundreds to thousands of kilo-
meters from the source regions �e.g., Mikumo, 1968; Wilson
and Forbes, 1969; Young and Greene, 1982�. Currently, a
global infrasound network consisting of 60 infrasound sta-
tions distributed over the Earth is being deployed as one part
of the International Monitoring System �IMS� designed to
detect nuclear explosions �Der et al., 2002�. The construction
of this network of stations, which measure differential pres-
sure in the frequency range from roughly 0.02 to 5 Hz �e.g.,
Arrowsmith and Hedlin, 2005�, has allowed infrasound to
emerge as a method of investigating a much broader range of
atmospheric and geophysical phenomena than was possible
until now. Recent work has focused on such disparate infra-
sound sources as meteors �ReVelle et al., 2004�, ocean swells
�Garceś et al., 2004a�, surf noise �Arrowsmith and Hedlin,
2005�, and tsunamis �Le Pichon et al., 2005�, as well as the
tragic Columbia shuttle explosion �Garceś et al., 2004b�. In
other studies, seasonal variations in infrasound arrivals from
recurring sources were used to probe atmospheric properties
�e.g., Le Pichon et al., 2002; Garceś et al., 2004a�. However,
improvements are needed in both atmospheric models and
acoustic propagation modeling methods in order to correctly
interpret the wide range of signals detected by the global

infrasound network �Bass et al., 2006�.
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Infrasound propagation is controlled mainly by reflec-
tions by the ground terrain, scattering by atmospheric turbu-
lence, advection through a windy atmosphere, refraction due
to sound-speed gradients, and attenuation due to the absorb-
ing properties of the atmosphere. Infrasound detections at
long ranges from the source are generally either thermo-
spheric arrivals, which result from downward refraction by
the steep temperature gradients of the upper atmosphere, or
stratospheric arrivals, which are ducted between the ground
and the stratopause. Detection of the latter depends strongly
on the stratospheric winds, while thermospheric waves are
strongly attenuated due to enhanced atmospheric absorption
within the thermosphere. Finite-difference time-domain
�FDTD� methods have been developed to model the effects
of sound propagation in a windy atmosphere �e.g., Ostashev
et al., 2005�. The goal of the present study is to develop a
FDTD method of simulating infrasound propagation through
a heterogeneous, absorptive atmosphere.

The effects of absorption are usually simulated using
frequency-domain modeling techniques, such as parabolic
equation �PE� or fast field program �FFP� methods �e.g.,
Jensen et al., 1994�. These methods use a heuristic approach
of adding a small imaginary value to the acoustic velocity to
simulate attenuation. However, these frequency-domain
methods make use of approximations to the atmospheric
model and/or to the governing wave equation that limit their
applicability. For instance, FFP methods assume that material
properties of the model vary only in a single spatial coordi-
nate, while PE methods compute one-way propagation,
which is valid only for models with limited range depen-
dence.

By contrast, the FDTD approach is applicable to a wide

range of complicated phenomena in heterogeneous media as
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it relies on a discretization of the governing equations. The
wider applicability of the FDTD method comes at the cost of
greater computational time and memory requirements. How-
ever, with advances in computing technology, the FDTD
method has drawn greater interest. A method of incorporat-
ing attenuation into an FDTD approach was developed by
Day and Minster �1984� for anelastic media, with refine-
ments by Emmerich and Korn �1987�, Blanch et al. �1995�,
and Day �1998�. These methods approximate the frequency-
domain stress-strain relations by low-order rational functions
of frequency. The approach may be applied to many types of
anelastic media. However, a drawback is that this approach is
computationally time- and memory-intensive as compared to
nonabsorptive materials.

In the next section, sound absorption mechanisms within
the atmosphere are described. It is shown that at frequencies
relevant to global infrasound investigations, i.e., 0.02–5 Hz,
the attenuation coefficient �in dB/m� can be decomposed into
two parts: a constant term and another proportional to the
square of the frequency. In Sec. III, it is demonstrated that
these attenuation effects may be simulated by modifying the
wave equation to include two attenuation terms. The degree
to which the revised wave equation introduces material dis-
persion is examined over the infrasound frequency band-
width for realistic attenuation values. In Sec. IV, two sets of
partial differential equations that are first order in time are
introduced to replace the attenuating wave equation. A nu-
merical algorithm to implement these FDTD equations is
developed for the case of two-dimensional �2D� models. It is
shown that inclusion of an attenuation term proportional to
the square of the frequency imposes additional constraints on
the model discretization in order to maintain numerical sta-
bility. In Sec. V, the algorithm is applied to several environ-
mental models, and FDTD solutions computed with and
without atmospheric absorption are compared. The paper
concludes with a discussion and summary of results.

II. ATMOSPHERIC ABSORPTION OF SOUND

The absorption of sound within any gas is controlled
primarily by the composition of the gas mixture, the ambient
pressure, temperature, sound frequency and, at higher fre-
quencies, by the humidity �Bass et al., 1995; Dain and Luep-
tow, 2001; Sutherland and Bass, 2004�. Absorption mecha-
nisms can be categorized in terms of classical losses caused
by the irreversible transfer of the kinetic energy of the acous-
tic wave into heat, and molecular relaxation losses, which
involve the excitation of the energy states of the gas mol-
ecules comprising the atmosphere �Evans et al., 1972; Eja-
kov et al., 2003�. Classical absorption includes losses due to
diffusion, heat conduction, and viscosity; molecular relax-
ation losses must be computed for each of the primary gas
constituents in the air–O2, N2, CO2, and O3. The absorption
mechanisms are cumulative, thus, the total attenuation coef-
ficient of sound, in dB/m, is given by the linear sum of the
attenuation components associated with each individual loss
mechanism.

Attenuation coefficients computed using the expressions

given in Sutherland and Bass �2004, 2006� are shown as a
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function of altitude for frequencies ranging from 0.05–4 Hz
in Fig. 1�a�. A simplified form of the attenuation coefficient
is sought as a function of frequency at each altitude for the
purpose of accurately including attenuation effects within the
finite-difference computations. For infrasonic frequencies,
classical losses dominate at altitudes above approximately
60 km, and the associated attenuation coefficient, in dB/m, is
proportional to the square of the frequency �Sutherland and
Bass, 2004�. At lower altitudes, losses associated with exci-
tation of vibrational modes of the gas molecules dominate.
For each of the gas constituents in the air, these losses, qvib,i

are proportional to

�f2/fvib,i�
�1 + �f/fvib,i�2�c

�1�

�Sutherland and Bass, 2004�, where f is the sound frequency,
fvib,i is the relaxation frequency for a particular gas compo-
nent, and c is the sound speed in the absence of attenuation.
The attenuation coefficient associated with the excitation of
the vibrational modes of each component of the gas, in
dB/m, is thus approximately proportional to the square of the
frequency at low frequencies f � fvib,i, and is nearly a con-
stant at high frequencies f � fvib,i.

The attenuation curves of Fig. 1�a� suggest that the cu-
mulative attenuation coefficient q, expressed in dB/m, may
be approximated by decomposing it into a component pro-
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FIG. 1. �a� Attenuation coefficients q�z , f� for frequencies of 0.05 �lowest
curve�, 0.1, 0.25, 0.5, 1, 2, and 4 Hz �uppermost curve�, computed using the
expressions given in Sutherland and Bass �2004�. �b� Decomposition of the
attenuation coefficients at each altitude in terms of a frequency-independent
component ��z�, shown by the dashed line, and a component of the attenu-
ation ��z� proportional to f2, shown by the solid line; ��z� is in units of m−1,
� has units of s2 m−1. Since the decomposition is imprecise, the coefficients
depend on the bandwidth chosen; values shown here are derived for the
frequency range from 0.05–4 Hz shown in �a�. �c� Attenuation curves re-
constructed using ��z�+��z�f2.
portional to the square of the frequency plus a constant at
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each altitude, although the fit may be degraded where vibra-
tional losses dominate, as discussed above. Accordingly, the
coefficients � and � that yielded the least-squares best fit to
q�z , f�=��z�+��z�f2 were computed at each altitude. The re-
sult of this decomposition for the frequency range
0.05–4 Hz is shown in Fig. 1�b�; the solid line shows the
derived ��z� attenuation coefficients and the dashed line in-
dicates ��z�. The attenuation curves in Fig. 1�c� were com-
puted using ��z�+��z�f2; comparison with the curves in Fig.
1�a� indicates the degree of accuracy of this approximation
over the frequency bandwidth relevant to infrasound propa-
gation. Discrepancies in the fit are most noticeable at the
lower altitudes. Since attenuation is almost negligible within
the lower atmosphere—an attenuation coefficient of
10−6 dB /m corresponds to a 0.1-dB loss over a 100-km path
length—these small errors are insignificant. The misfit be-
tween attenuation values shown in Fig. 1�a� and Fig. 1�b�
approach 20–30% at altitudes over 120 km. However, at-
tenuation estimates are only approximate at altitudes greater
than 90 km due to uncertainties in the atmospheric composi-
tion �Sutherland and Bass, 2004�. A misfit up to 30% may
thus be considered sufficient, given that the attenuation spans
many orders of magnitude over the infrasound propagation
band.

As indicated in Fig. 1�c�, the derived attenuation coeffi-
cients ��z�+��z�f2 dB/m are reasonably accurate over ap-
proximately two orders of magnitude in frequency. However,
these coefficients must be rederived for any other frequency
band of interest since the decomposition is inexact. In gen-
eral, the constant term ��z� is larger and the ��z� term is
smaller for higher frequency bands.

III. ATMOSPHERIC ABSORPTION AND VELOCITY
DISPERSION

Given that the atmospheric absorption of sound may be
approximated by an attenuation coefficient with two
terms—a constant plus a term proportional to the square of
the frequency—an acoustic plane wave propagating in the
positive x direction must have pressure fluctuations of the
form

p�x,t� � ei2�f�x/cp−t�e−��f�x, �2�

where cp is the phase speed, t is time, and the attenuation
�=q / �20 log10�e�� is a scaled version of the attenuation de-
fined in the previous section.

It will now be shown that the solution to the following
equation has the form given by Eq. �2� for the attenuation
values and frequencies considered in this paper:

c2�1 + �
�

�t
� �2p

�x2 =
�2p

�t2 + 	
�p

�t
, �3�

where � is the shear viscosity, in units of seconds, and 	 is a
damping coefficient, in units of s−1. As outlined in the Ap-
pendix �for a 3D medium�, this equation describes plane-
wave propagation though a homogeneous compressible
Newtonian fluid with a small external damping force. The
case ��0, 	=0 is a medium in which internal viscosity is

the dominant absorption mechanism �Knopoff, 1956; Light-
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hill, 1978�. For the case �=0, 	�0, Eq. �3� corresponds to a
simple damped oscillator, with a viscous force proportional
to the particle velocity opposing the motion �e.g., Boyce and
di Prima, 1977�. The latter case reduces to the telegraph
equation, which combines the wave equation and the diffu-
sion equation. Here, we treat only the case 	�p /�t��2p /�t2

so that wave motion dominates, not diffusion.
Inserting a trial solution of the form p�x , t�=ei�kx−
t� into

Eq. �3�, where 
 is the circular frequency and k is the wave-
number, yields a complex-valued �squared� wavenumber of
the form

k2�
� =
1

c2


2 + i	


�1 − i�
�
. �4�

From Eq. �2�, it can be seen that the wavenumber k is related
to the frequency-dependent phase speed cp�
� and attenua-
tion through

k = 
/cp�
� + i��
� . �5�

By writing k2�
� in exponential notation as k2�
�
= �k2�exp�i��, where � is the argument of k2�
�, and apply-
ing Eq. �5�, it can be seen that


/cp�
� = Re�k� = ��k2�cos��/2� , �6a�

��
� = Im�k� = ��k2�sin��/2� . �6b�

With some algebra manipulations, and applying trigonomet-
ric half-angle formulas, it can be shown that

� cp�
�
c

�2

=
2�1 + �2
2�

�1 − �	� + ��1 + �	/
�2��1 + �2
2�
, �7a�

and

�2�
� =

2

2c2�1 + �2
2�
���1 + �	/
�2��1 + �2
2� − �1

− �	�� . �7b�

Thus, the solution to Eq. �3� is

p�x,t� = ei
�x/cp�
�−t�e−��
�x, �8�

where cp�
� and ��
� are the positive square roots of Eqs.
�7a� and �7b�, respectively, for plane waves propagating in
the positive x direction.

For small viscosity coefficients, i.e., 	�
 and �
�1,
and retaining terms up to second order in �	 /
� and �
, it
can be shown that �2�
�	�	+�
2�2 / �4c2�, so

��
� 	 �	 + �
2�/�2c� , �9�

which has the desired response for acoustic propagation
through an absorbing atmosphere. Comparing Eqs. �2� and
�9�, the coefficient of viscosity � is related to � through

� = �c/�40�2 log10�e�� . �10a�

and the damping coefficient 	 relates to � as

	 = c�/�10 log10�e�� . �10b�

These values are dependent on altitude, as both c and the

attenuation coefficients � and � vary with altitude. Coeffi-
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cients ��z� and 	�z� are shown in Fig. 2�b� for the sound
velocity profile shown in Fig. 2�a�. These coefficients are
used in the remainder of this paper to designate realistic at-
mospheric attenuation value.

Equation �7a� indicates that the acoustic velocity is dis-
persive; this is in agreement with the Kramers-Kronig rela-
tions, initially developed in electromagnetic theory, which
show that phase velocity shows frequency dependence in at-
tenuating media. The relation between attenuation and dis-
persion for acoustic waves in media with attenuation obeying
other frequency power laws in discussed in Aki and Richards
�1980�. More recently, Bass et al. �2007� examined the effect
of velocity dispersion on sound refraction in the upper atmo-
sphere. Figure 3 shows the derived cp�f� /c ratios at altitudes
of 100, 120, 140, and 160 km for frequencies from
0.01 to 2 Hz, derived using Eq. �7a� and attenuation values
shown in Fig. 2�b�. These are compared to corresponding
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the red dash-dot lines with filled symbols indicate corresponding values for
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The values of c at these altitudes are shown in Fig. 2�a�. At these frequen-

cies, velocity dispersion is significant only at altitudes over 100 km.
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ratios computed using formulas found in Bass et al. �2007�.
The results show that dispersion is negligible at altitudes less
than 100 km over the range of frequencies typically recorded
in global infrasound studies. At higher altitudes, both models
indicate significant increases in velocity at the upper end of
the infrasound frequency band. However, velocity dispersion
at the upper end of the frequency range is more pronounced
for the Bass et al. �2007� formulas than is predicted by Eq.
�7a�. It is not clear why this is true. As shown, Eq. �7a�
predicts a slight decrease in phase velocity at the lower end
of the frequency band at an altitude of 160 km.

IV. ACOUSTIC PROPAGATION IN AN ABSORBING
ATMOSPHERE

A. First-order differential equations

As shown in Eqs. �A7�, �A85�, and �A18� of the Appen-
dix, the following pair of first-order differential equations in
time governs linear acoustic propagation through an attenu-
ating atmosphere:

�vs

�t
= fi −

1

�

�ps − �3�c2/4����2vs +

1

3
� �� · vs���

− 	vs, �11a�

�ps

�t
= − �c2 � · vs, �11b�

where ps is defined as the pressure perturbation due to the
sound wave, vs is the acoustic particle velocity, and � is the
atmospheric density. The addition of the 	 term is heuristic,
added only to yield more realistic atmospheric absorption
values. Terms proportional to gravity are important at very
low frequencies corresponding to internal waves �Ostashev
et al., 2005; Lingevitch et al., 1999� and are omitted here.
The effects of wind are beyond the scope of this paper. As
expected, Eqs. �11� reduce to the standard FDTD equations
for acoustic propagation �Botteldooren, 1994� for the case
�=	=0.

As shown in Eq. �A17� in the Appendix, the coupled
equations yield

�2ps

�t2 = c2�1 + �
�

�t
��2ps − 	

�ps

�t
−

c2

�
� � · �ps, �12�

where the external force has been omitted. For a homoge-
neous medium, this reduces to

�2ps

�t2 = c2�1 + �
�

�t
��2ps − 	

�ps

�t
. �13�

In this case the pressure depends only on the distance from
the source. The outgoing solution of Eq. �13� for a point
source at the origin is given by the real part of

ps�R,t� = A
ei
�R/cp�
�−t�

R
e−��
�R, �14�

where R=��xixi�1/2 is the distance from the source, A is a
complex-valued constant, and cp�
� and ��
� are the posi-

tive square roots of Eqs. �7a� and �7b�, respectively.
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B. Propagation through a medium with exponentially
decreasing density

Equation �14� holds for an isothermal model with con-
stant density and attenuation values. An analytic expression
may also be derived for a somewhat more realistic atmo-
spheric model represented as an isothermal medium with ex-
ponentially decreasing density. Using the hydrostatic equa-
tion dpo /dz=−g�, where po is the atmospheric pressure in
the absence of a sound wave and g is the acceleration due to
gravity, and the ideal gas law po=�RaT, where T is the tem-
perature in degrees Kelvin and Ra=287.04 J kg−1 K−1 is the
gas constant for dry air, the density gradient with altitude is
derived as

���z�
�z

= −
�g

RaT
, �15�

for an isothermal atmosphere. Horizontal density gradients
are negligible. The atmospheric density decreases by about 6
orders of magnitude over 100 km in altitude.

The density may be defined as ��z�=��0� e−az for an
isothermal atmosphere, where a=g /RaT. Combining this ex-
pression for density with Eq. �12� then yields

�2ps

�t2 = c2�1 + �
�

�t
��2ps − 	

�ps

�t
+ ac2�ps

�z
. �16�

The outgoing solution of Eq. �16� for a point source at the
origin is given by the real part of

ps�R,t� = Ae−az/2ei
�R/cp�
�t�

R
e−��
�R

= A��
ei
�R/cp�
�t�

R
e−��
�R. �17�

This expression is accurate for �
�1 and 
�cg /RaT. The
former requirement is accurate for infrasound frequencies
and atmospheric viscosities. The latter requirement is valid at
periods much less than 5 min, at which point buoyancy ef-
fects �gravity waves� are significant. Since the vertical pres-
sure and density gradients depend on gravity, this may sug-
gest that gravitational forces are significant in computing
infrasound propagation. However, tests showed that inclu-
sion of gravity terms within the equations governing linear
acoustic propagation �e.g., Gill, 1982� led to waveforms that
differed by less than 1% over propagation distances of 10 km
at frequencies greater than 0.02 Hz. The effect of the density
gradient on the wavenumber and velocity becomes signifi-
cant at lower frequencies than are considered in this paper.

Comparison of Eqs. �14� and �16� indicates that pressure
fluctuations in a medium with exponentially decreasing den-
sity attenuate more rapidly by a factor of �� as they propa-
gate upward, as compared to pressure fluctuations from a
source in a uniform density medium. Conversely, the pres-
sure amplitudes decrease less rapidly as the wave propagates
downward into denser atmosphere. This follows from con-
sideration of the energy density of the propagating wave
�Gill, 1982�. Note that that this is not an absorption effect

since energy is not lost to the atmosphere.
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C. FDTD equations

Though Eqs. �11� correctly describe the physics of
acoustic propagation through an attenuating atmosphere,
they are not in an optimal form for FDTD implementation.
More conveniently, the first-order differential equations in
time may be expressed as

�vs

�t
= fi −

1

�
�1 + �

�

�t
� � ps, �18a�

and

�ps

�t
= − �c2 � · vs − 	sp . �18b�

Combining these equations and omitting external forces
yields the governing equation Eq. �12�, assuming terms in-
volving products of viscosity and density gradients are neg-
ligible. Note that, taken individually, Eqs. �18a� and �18b�
are not equivalent to Eqs. �11�, but combined, each set yields
Eq. �12� to first order.

The FDTD approach is based on replacing the spatial
and time derivatives in the governing equations by their dif-
ference approximations. The system of Eqs. �18a� and �18b�
is solved here for two-dimensional �2D� models using a
staggered-grid finite-difference technique originally pro-
posed by Yee �1966�. The model is divided into a grid of
cells of dimension �x by �y, each with uniform density and
velocity. The pressure variables are sampled at the center of
each grid at times n�t, where �t is the temporal step size,
and the velocity variables are sampled at points straddling
the grid boundaries at times �n+1 /2��t. Sampling points in
this way yields discretized difference operators that are ac-
curate to second order.

Adopting the notation

pI,J
n = ps�I�x,J�z,n�t� , �19a�

vx,I,J
n+1/2 = vs,x��I − 1/2��x,J�y,�n + 1/2��t� , �19b�

vy,I,J
n+1/2 = vs,y�I�x,�J − 1/2��y,�n + 1/2��t� , �19c�

the set of ions Eqs. �18a� may be replaced by

vx,I,J
n+1/2 − vx,I,J

n−1/2

�t
= −

1

�I−1/2,J

�1 +

�I−1/2,J

�t
�� pI,J

n − pI−1,J
n

�x
�

−
�I−1/2,J

�t
� pI,J

n−1 − pI−1,J
n−1

�x
�� , �20a�

vy,I,J
n+1/2 − vy,I,J

n−1/2

�t
= −

1

�I,J−1/2

�1 +

�I,J−1/2

�t
�� pI,J

n − pI,J−1
n

�y
�

−
�I,J−1/2

�t
� pI,J

n−1 − pI,J−1
n−1

�y
�� , �20b�

where �I,J denotes the density, and �I,J the shear viscosity
values at the center of the �I ,J�th cell, and the half-integer
subscripts denote the average values between two adjacent

cells. The discretized version of Eq. �18b� is given by
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pI,J
n+1 − pI,J

n

�t
= − �I,JcI,J

2 
vx,I+1,J
n+1/2 − vx,I,J

n+1/2

�x
+

vy,I,J+1
n+1/2 − vy,I,J

n+1/2

�y
�

− 	I,J
 pI,J
n+1 + pI,J

n

2
� . �21�

where cI,J and 	I,J denote sound speeds and damping values
within the �I ,J�th cell. Equations �20a� and �20b� indicate
that only one set of pressure variables pn must be stored if
the � variable is equal to zero. Introduction of this attenua-
tion coefficient requires saving an extra matrix of the pres-
sure variables, i.e., pn−1, at each time step. The reason for
replacing Eqs. �11� with Eqs. �18a� and �18b� is now appar-
ent; use of Eqs. �11� would require saving both the vx

n−1 and
vy

n−1 matrices and would involve may more computational
steps, thus increasing the computational load.

The term involving � in Eq. �18a� is expressed as a
backward difference operator in time in Eqs. �20�, rather than
a central difference operator; thus, it is accurate only to first
order. The numerical errors resulting from this choice are
examined more closely in the next subsection. The 	p term
of Eq. �18b� is computed in Eq. �21� using the time average
of the pressure terms at times n and n+1. The time derivative
on the left-hand side of Eq. �21� is therefore correctly cen-
tered at time n+1 /2.

Equation �21� may be rearranged as

pI,J
n+1�1 +

	I,J�t

2
� = pI,J

n �1 −
	I,J�t

2
�

− �I,JcI,J
2 �t
vx,I+1,J

n+1/2 − vx,I,J
n+1/2

�x

+
vy,I,J+1

n+1/2 − vy,I,J
n+1/2

�y
� . �22�

The factor �1	�t /2� in the above equation is a first-order
Taylor approximation to exp�	�t /2�. The update equations
for the pressure p may then be expressed more accurately as

pI,J
n+1 = pI,J

n e−	I,J�t − �I,JcI,J
2 �t
vxI+1,J

n+1/2 − vxI,J

n+1/2

�x

+
vyI,J+1

n+1/2 − vyI,J

n+1/2

�y
�e−	I,J�t/2. �23�

Equations �20a� and �20b�, and Eq. �23� form the set of
coupled equations used in the numerical implementation of
the FDTD method.

D. Numerical dispersion and stability

Approximations made in discretizing the continuous
partial differential equations lead to numerical dispersion in
FDTD solutions �Taflove and Hagness, 2000�. The degree of
dispersion depends on the ratio of the propagating wave-
length to the grid discretization. A rule of thumb for nonat-
tenuating media is that there should be at least 10 nodes per
wavelength for the staggered-grid FD method developed by
Yee �1966�. To compute numerical dispersion for the coupled

equations Eqs. �20� and �23�, one may consider an homoge-
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neous medium with uniform density, sound speed, viscosity,
and damping values. A trial FDTD set of solutions for the
velocity and pressure fields of the form

Vx,I,J
n+1/2 = Vx0ei�
�n+1/2��t−k̃x�I−1/2��x−k̃yJ�y�, �24a�

Vy,I,J
n+1/2 = Vy0ei�
�n+1/2��t−k̃xI�x−k̃y�J−1/2��y�, �24b�

PI,J
n = P0ei�
n�t−k̃xI�x−k̃yJ�y�, �24c�

may be postulated, where k̃x and k̃y are the numerical ap-
proximations to the horizontal and vertical wavenumbers.

Substitution of the trial wave solutions Eqs. �24a� and
�24c� into Eq. �20a� yields the following relation:

Vx0 = P0
�t

��x

sin�k̃x�x/2�
sin�
�t/2� 
1 +

�

�t
�1 − e−i
�t�� . �25a�

Similarly, substituting Eqs. �24b� and �24c� into Eq. �20b�
yields

Vy0 = P0
�t

��y

sin�k̃y�y/2�
sin�
�t/2� 
1 +

�

�t
�1 − e−i
�t�� . �25b�

Finally, the trial solutions for the partical velocities may be
substituted into Eq. �23� to get

P0
 sin�
�t/2 − i	�t/2�
�t

� = �c2
Vx0
sin�k̃x�x/2�

�x

+ Vy0
sin�k̃y�y/2�

�y
� . �26�

Equations �25a� and �25b� are substituted into Eq. �26� to
yield a numerical dispersion relation. For the case where a
square cell grid is used, i.e., �x=�y=�, the numerical dis-
persion relation may be expressed as

� �

c�t
�2
 sin��
 − i	��t/2�sin�
�t/2�

1 + ��/�t��1 − e−i
�t� � = sin2� k̃x�

2
�

+ sin2� k̃y�

2
� . �27�

The accuracy of the FDTD computations for a given time
discretization �t and grid spacing � can be determined using
this equation. Defining the Courant stability factor S
= �c�t /�� and the grid sampling rate N�= �� /��, the disper-
sion relation Eq. �27� may be reformulated as

1

S2
 sin��S/N� − i	�t/2�sin��S/N��
1 + ��/�t��1 − e−i2�S/N�� � = sin2��k̃ cos �

2
�

+ sin2��k̃ sin �

2
� , �28�

where � is the propagation direction with respect to the
x-axis. For �=	=0, this equation reduces to the numerical
dispersion relation found in Taflove and Hagness �2000�.
Equation �28� shows that the numerical dispersion intro-

duced by FD discretization is a function of the propagation
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direction as well as the temporal and spatial sampling inter-
vals.

For accurate FDTD simulation the grid sampling rate
N�, and hence the time sampling rate, is based on the highest
frequencies propagated through the grid. As an example,
consider a model with sound speed c=300 m /s and a source
bandwidth of up to 2.5 Hz. Setting N�=12 at the upper end
of the frequency range yields a grid spacing of �=10 m. A
Courant stability factor S=0.5 yields a time sampling inter-
val of �t=0.0167 s. Figure 4�a� shows the normalized nu-

merical sound speed c̃ /c=
max /Re�k̃� as a function of propa-
gation angle for models with no attenuation �circles�; 	
=0.01, �=0 �x’s�; 	=0, �=0.005 �triangles�. Figure 4�b�
shows the normalized attenuation factors Im�−k̃� / �	 / �2c��
and Im�−k̃� / ���
2 / �2c�� for the latter two models. Note
that the numerical phase velocity computed here differs from
the dispersive velocities examined in Sec. III as it results
from the discretization of the wave equations. Only in the
case lim �t→0 and lim �→0, it can be shown that the nu-

merical wavenumber k̃2 approaches k2 as defined by Eq. �4�.
As indicated in Fig. 4, both the numerical phase velocity

and attenuation depend weakly on the propagation angle;
however, the difference is less than 2% for the given discreti-
zation values. Furthermore, variations in numerical phase ve-
locities exists whether or not attenuation is included. For �
=0, 	�0 the 	 value has minimal effect on the numerical
phase velocity and attenuation over frequencies and attenua-
tion values relevant to global infrasound propagation. How-
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FIG. 4. �a� Variation of the numerical sound-speed ratio c̃ /c with propaga-
tion angle for models with no attenuation �circles�; 	=0.01, �=0 �x’s�; 	
=0, �=0.005 �triangles�. The case 	=0.01, �=0, produces negligibly more
numerical dispersion than for the case of no attenuation. Propagation angles
are with respect to the horizontal axis. �b� Variation of the attenuation ratios

Im�k̃� / Im�k� for the models with nonzero attenuation as given above. S
=0.5, N�=12, and �t=0.0167 s were used for each case.
ever, for 	=0, ��0, the accuracy of the FDTD solution
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degrades with increasing � values—the normalized veloci-
ties increase and the normalized attenuation factors decrease.

Finally, it is known that for a 2D model the time step �t
must be chosen such that S�1 /�2 to ensure stability �Taf-
love and Hagness, 2000�. Neglecting 	, it can be shown that
for 
max ��1, the stability requirement is given by

�t �
�

�2c�1 + 
max
2 �2/4�

. �29�

The conditions 
max ��1 and Eq. �29� provide stability lim-
its on the computations. Thus, the requirement 
max��1
imposes an upper limit on � or, conversely, on 
max for
FDTD computations.

V. EXAMPLES

Several FDTD solutions to problems of infrasound
propagation through an absorbing atmosphere are presented
in this section. Examples A and B are idealized problems
used to test and illustrate the effects of including attenuation
coefficients in the FDTD method. Example C involves a
more realistic atmospheric waveguide. For each example the
side and top boundaries are terminated using a perfectly
matched layer �PML� absorbing boundary condition �Be-
renger, 1994� initially developed for electromagnetic waves.
The PML boundary conditions are also applied to the bottom
boundary for examples A and B, that is, the models are as-
sumed to be whole spaces. The source function shown in Fig.
5, which consists of a high-frequency pulse followed by a
lower-frequency wave, was used for each example.

Example A consists of a uniform whole space with con-
stant density and a constant sound speed of 330 m /s. Pres-
sure waves are sampled at distances from 2 to 10 km from
the source, at intervals of 2 km. The node spacing is 10 m,
yielding 15 nodes per wavelength at the maximum source
frequency of 2.2 Hz, and the time sampling interval is
0.0168 s, corresponding to S=1 /1.8. Results were synthe-
sized for a model with no attenuation and compared to three
attenuation models: first, a model with constant attenuation
values of 	=0, �=0.002; from Eq. �10a�, this corresponds to
an attenuation coefficient of 1.039�10−3 f2 dB /m; second, a
model with constant attenuation values of 	=0, �=0.005,
corresponding to an attenuation coefficient of 2.60
�10−3 f2 dB /m; and third, a model with 	=0.01, �=0; from
Eq. �10b�, this corresponds to an attenuation coefficient of
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FIG. 5. The source function used for examples A, B, and C. This source was
generated by bandpass filtering a spikelike waveform between 0.02 and
2.2 Hz.
1.316�10 dB /m.
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The synthesized waveforms for models with varying �
are shown in Fig. 6�a�. The waveforms for models with no
attenuation show two-dimensional geometrical spreading
away from the source. In comparison, waveforms propagated
through models with nonzero � values show greater attenu-
ation of the initial higher frequency pulse, but the later, low-
frequency wave at approximately 4 s is virtually unchanged.
Furthermore, the waveforms for the nonzero � models are
slightly advanced with respect to the nonattenuated wave-
forms. The numerical dispersion relation, Eq. �28�, predicts
that the phase velocity for the model with �=0.005 should
be about 0.5% faster than the model with no attenuation, as
shown in Fig. 4�a�, and in agreement with Eq. �7a�, which
also predicts higher phase velocities with increasing �. Syn-
thesized waveforms for models with no attenuation are al-
most identical to those for the model with 	=0.01, as shown
in Fig. 6�b�. This is approximately the highest value of the
constant attenuation coefficient 	 realized in the Earth’s at-
mosphere, as indicated in Fig. 2. As shown in Fig. 6�b�, the
constant attenuation term conserves the shape of the wave-
form.

The power spectra for the pressure waveforms sampled
at a distance of 10 km from the source are shown in Fig. 7.
As indicated, waveforms for models with ��0 are most
significantly attenuated at the highest frequencies sampled,
whereas waveforms for models with 	�0 are uniformly at-
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FIG. 6. �a� Synthesized waveforms for models with varying � values at
distances from 2 to 10 km from the source. The pressure waveforms are
shown as a function of reduced time, which is the time minus the range
divided by the sound speed �c=330 m /s�. The waveforms for the models
with no attenuation are shown by the black line; the results for �=0.002 are
indicated in red, and the results for �=0.005 are indicated in blue. �b� The
black line shows the pressure solutions for the model with no attenuation;
the red lines indicates waveforms corresponding to models with 	=0.01.
tenuated at all frequencies. For 	=0.01 the power spectral

J. Acoust. Soc. Am., Vol. 124, No. 3, September 2008 C. de Groot-Hedl
ratio of attenuated to unattenuated waveforms at 10 km is
0.736 for the entire source bandwidth, corresponding to a
transmission loss of 1.33 dB; this agrees to within 1% with
the predicted transmission loss of 1.32 dB at 10 km for this
value. 	 value. For the �=0.002 model, the attenuation at a
frequency of 0.25 Hz is 0.629 dB, which compares well with
the predicted transmission loss of 0.631 dB at this distance
and frequency. Similarly, the attenuation for the �=0.005
model, observed to be 1.57 dB at 0.25 Hz and 10 km from
the source, compares well with the predicted transmission
loss of 1.58 dB.

The model for example B is similar to example A with
the difference that the atmospheric density decreases expo-
nentially with altitude at a rate of three orders of magnitude
over 50 km. Pressure waves are sampled at altitudes from
2 to 8 km both above and below the source, at intervals of
2 km. Waveforms were synthesized twice; once for a model
with no attenuation and once for a model with 	=0, �
=0.002, as shown in Fig. 8. Comparing this to Fig. 6�a�, it
may be seen that waveform amplitudes decrease more rap-
idly with increasing distance from the source as they propa-
gate upward into thinner atmosphere than for a model with
constant density. Conversely, the waveform’s amplitudes de-
crease much more slowly as the acoustic energy propagates
downward. Again, including a nonzero � term in the model
leads to waveforms with suppressed high-frequency pulses.

Normalized power spectra for each waveform are shown
in Fig. 9. The power spectra corresponding to the model with
�=0.002 lie along diminishing curves as the distance from
the source increases. The transmission loss values of 0.148,
0.284, 0.428, and 0.576 dB for the synthesized waveforms at
the peak frequency of 0.26 Hz compare well with the pre-
dicted transmission loss values of 0.142, 0.283, 0.425, and
0.566 dB at this frequency.

Example C is similar to example B except that both
realistic sound-speed and attenuation profiles for an altitude
range of 89 to 111 km are used, as shown in Fig. 2. The
source is located at an altitude of 100 km and waveforms are
sampled at altitudes from 2 to 8 km above and below the
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FIG. 7. Ratios of power spectra for pressure waveforms at a distance of
10 km from the source for example A. Power spectra are normalized with
respect to the peak power of the waveform for the model with no attenuation
�solid black line�. The dashed line corresponds to the 	=0, �=0.002 model,
the dash-dot line corresponds to the 	=0, �=0.005 model, and the gray line
corresponds to the 	=0.01, �=0 model.
source, at intervals of 2 km. Since the sound speeds are
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lower for this final example, the model was discretized in
cells of 8 m�8 m and the time sampling interval was set to
0.0135 s. Waveforms were synthesized both with and with-
out attenuation. Results are shown in Fig. 10. Arrivals are
earlier for upward propagation due to variations in the
sound-speed profiles, as shown in Fig. 2.

As indicated in Fig. 10, the high frequencies are more
severely attenuated as they propagate upward from the
source rather than downward, since the atmospheric absorp-
tion increases with altitude. This is seen more clearly in Fig.
11, where the normalized power spectra for each attenuated
waveform are compared to the corresponding nonattenuated
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FIG. 8. Synthesized pressure waveforms for example B at distances from
2 to 8 km above �upper waveforms� and below the source located at 0 km
�lower waveforms�, shown as a function of reduced time. Results for a
model with no attenuation are shown in black and results for a model with
�=0.002 are shown in red.
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FIG. 9. Normalized power spectra for each waveform shown in Fig. 8. At
each range step, the power spectra are normalized with respect to the peak
power for waveforms propagated through the nonabsorbing medium. Power
spectra for the waveforms synthesized from the model with no attenuation
lie along a single curve, shown by the heavy line, indicating that spectral
content is preserved. The red lines, which become lighter with increasing
distance from the source, are the normalized power spectra for waveforms at
distances of 2, 4, 6, and 8 km from the source for a model with �=0.002.
The red lines show that high frequencies are diminished with increasing

distance from the source.
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waveforms. As in Example B, the power spectra for wave-
forms lie along diminishing curves with increasing distance
from the source, but here the attenuation is greater for the
receivers above the source.

VI. DISCUSSION AND CONCLUSIONS

A FDTD technique has been developed for acoustic
propagation through a heterogeneous absorbing atmosphere.
The attenuation terms used in the propagation modeling were
defined in such a way as to match observed variations in
absorption with frequency. It was demonstrated that, for fre-
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FIG. 10. Synthesized pressure waveforms for example C at distances from
2 to 8 km above and below the source located at 100 km. Results for a
model with no attenuation are shown in black and results for a model with
realistic attenuation profiles for this altitude range are shown in red for
down-going waves and blue for up-going waves. The reducing velocity was
set to 260 m /s.
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FIG. 11. Normalized power spectra for each waveform shown in Fig. 10. At
each range step, the power spectra are normalized with respect to the peak
power for waveforms propagated through a nonabsorbing medium. Power
spectra for waveforms synthesized from the model with no attenuation lie
along a single curve, shown by the black heavy line. The red dashed lines
are the corresponding power spectra for down-going waves at distances of 2,
4, 6, and 8 km from the source and the blue dash-dotted lines are for up-
going waves. Waveforms undergo greater attenuation for upward propaga-

tion than for downward propagation.
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quency bandwidths of approximately two orders of magni-
tude, infrasound attenuation within the atmosphere may be
modeled as the sum of a constant term �, and another term �
multiplied by the square of the frequency. For infrasound
propagation within Earth’s atmosphere, the former term
dominates at altitudes of approximately 30–50 km, i.e.,
within the upper stratosphere; the � term dominates at other
altitudes.

Inclusion of attenuation terms in the wave equation is
associated with some velocity dispersion, i.e., the sound ve-
locity becomes a function of frequency. However, this effect
is small except at very high attenuation levels within the
upper atmosphere, and at the upper end of the frequency
range of interest.

The accuracy of the absorbing FDTD technique was
tested for several problems involving models with uniform
velocity. By comparing results for models with and without
attenuation terms, it was shown that the predicted transmis-
sion losses for the attenuating media agreed with those com-
puted from the synthesized waveforms. Inclusion of the con-
stant attenuation term does not reduce the stability or
computation time of the algorithm. However, inclusion of the
��0 term increases the computation time by approximately
50% and requires storage of an extra pressure time step. It
also imposes extra conditions on the product of the fre-
quency and viscosity, 
max �max�1, and on the temporal
sampling interval �t�� / ��2c�1+
max

2 �2 /4��; these condi-
tions are required to maintain stability of the two-
dimensional FDTD algorithm. Note that the best-fit ��z� pro-
file depends on the frequency bandwidth of interest and
decreases at higher frequency ranges; thus, this requirement
does not preclude the use of this algorithm at higher frequen-
cies.

Possible extensions of this work involve including terms
in the wave equations to account for wind and gravitational
effects. Wind affects infrasound propagation at all frequen-
cies; gravitational effects could alter the waveform solutions
at lower frequencies than are of interest here. Other exten-
sions include testing the accuracy of the Sutherland and Bass
�2004� models by comparing numerically synthesized wave-
forms derived from the algorithm presented here against ex-
perimental observations.
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APPENDIX: ACOUSTIC PROPAGATION IN A VISCOUS
FLUID

The equations governing linear acoustic propagation
through an attenuating fluid or gas may be derived as out-
lined in this Appendix.

The equation of motion relating the fluid acceleration to
the stress tensor �ij and the external volume force per unit
mass f i is given by

�
Dvi

Dt
= �f i +

��ij

�xj
, �A1�

�Eq. 3.2.2 of Batchelor, 1967� where � denotes the density, vi

is the particle velocity, and D /Dt is the advective derivative,
D /Dt=� /�t+v ·�.

A Newtonian fluid is one in which the shear stress is
linearly proportional to the rate of shear deformation. In this
case the stress-strain relationship in summation notation is
given by

�ij = − p�ij + Aijkl
�vk

�xl
, �A2�

�Eq. 7.3-1 of Fung, 1977� where p is the mean normal stress,
�ij is the Kronecker delta, equal to 1 if i= j and 0 otherwise,
and the fourth-order tensor coefficients Aijkl depend on the
state of the fluid, i.e., the temperature, but not on the stress or
rate of deformation. The second term on the right represents
the deviatoric stress tensor and is defined such that the diag-
onal terms sum to zero. The stress tensor may be expressed
as

�ij = − p�ij + 2���eij − 1/3��ij� , �A3�

if the fluid is isotropic �Eq. 3.2.11 of Batchelor, 1967; Eq.
7.3.6 of Fung, 1977�, where �� is the viscosity in units of
kg m−1 s−1, eij =1 /2��vi /�xj +�v j /�xi�, and � is the rate of
expansion given by �=� ·v=ekk. A fluid with behavior that
obeys Eq. �A3� is called a Stokes’ fluid.

Substitution of Eq. �A3� for the stress tensor into Eq.
�A1� yields the following equation of motion for a Stokes’
fluid:

�
Dvi

Dt
= �f i −

�p

�xi
+ ����2vi +

1

3

��

�xi
� . �A4�

As discussed in Batchelor �1967�, Eqs. �A3�, and hence Eq.
�A4�, were derived under the assumption that the rate of
isotropic expansion does not contribute to the stress; thus,
the mean normal stress p is equal to the pressure. If a damp-
ing term is added the equation of motion as an external force,
Eq. �A4� becomes

�
Dvi

Dt
= �f i −

�p

�xi
+ ����2vi +

1

3

��

�xi
� − 	�vi, �A5�

where 	� is the damping coefficient in units of kg m−3 s−1.
The inclusion of this term is entirely heuristic and is used to
provide an additional degree of freedom to the governing
equations and thus provide a better fit with observed attenu-
ation values, particularly at midaltitudes. Gravitational ef-

fects may also be included as an external force but are ne-
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glected here as they are relevant to much lower frequencies
than are dealt with in this paper.

In the presence of fluctuations caused by the passage of
a sound wave, the total pressure, density, and velocity may
be expressed as p= po+ ps, v=w+vs, and �=�o+�s, where po,
w, and �o are ambient values, and ps, vs, and �s are small
fluctuations caused by the sound wave. A linear expression
for the particle velocity in the presence of a sound wave may
be derived by inserting these values into Eq. �A5�, and re-
taining only first-order terms in the pressure, velocity, and
density terms. Furthermore, the effects of wind are neglected
in this paper. Then,

�vs,i

�t
= f i −

1

�o

 �ps

�xi
− ����2vs,i +

1

3

��s

�xi
� + 	�vs,i� , �A6�

where �s=� ·vs. In vector notation, this may be written as

�vs

�t
= fi −

1

�o

�ps − ����2vs +

1

3
� �� · vs�� + 	�vs� ,

�A7�

where �2vs is a vector with components �2vs

= ��2vs,x ,�2vs,y ,�2vs,z�. Viscosity values �� are nearly con-
stant within the atmosphere up to an altitude of 86 km �Gill,
1982�.

The equation of state for air is given by p= p�� ,S�,
where S is the entropy. Applying the advective derivative to
the equation of state yields

Dp

Dt
= c̃2D�

Dt
+ h

DS

Dt
, �A8�

where c̃2=�p /�� is the squared sound speed in the presence
of a sound wave, and h=�p /�S. The first term on the right
denotes the change in pressure associated with a density
change. The second term represents the increase in entropy
caused by the passage of a sound wave, and is associated
with an increase in temperature due to viscous dissipation. In
the absence of a mass source, the conservation of mass equa-
tion is given by

D�

Dt
= − � � · v , �A9�

so the first term on the right of Eq. �A8� is given by
−�c̃2� ·v.

The entropy per unit mass � is related to the internal
energy per unit mass E through

Td� = dE + pd�1/�� , �A10�

�Eq. 3.2.1 of Gill, 1982�, where T is the temperature. Apply-
ing the advective derivative leads to

T
D�

Dt
=

DE

Dt
−

p

�2

D�

Dt
. �A11�

Using the equation for the conservation of mass leads to

T
D�

Dt
=

DE

Dt
+

p

�
� · v . �A12�
From Eq. �3.4.4� of Batchelor �1967�,
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DE

Dt
= −

p

�
� · v +

2�

�
�eijeij −

1

3
�� · v�2�

+
1

�

�

�xi
�k

�T

�xi
,� , �A13�

where the first term on the right is related to compression or
expansion, the second term relates to the shear viscosity, and
the final term relates to heat exchange by molecular conduc-
tion, which is not considered further. Combining Eqs. �A12�
and �A13� �neglecting the conduction term� leads to

T
D�

Dt
=

2�

�
�eijeij −

1

3
�� · v�2� . �A14�

The change in the entropy per unit mass is proportional to
the square of the particle velocity perturbation in the absence
of wind, and is thus negligible to first order for linear propa-
gation and for small �.

Since propagation is isentropic to first order, the second
term of Eq. �A8� may be neglected. It may also be shown
that for small perturbations c̃2=c2 �e.g., Gill, 1982�, where
c2=�po /��o is the squared static sound speed. Then, combin-
ing Eqs. �A8� and �A9� and retaining only first-order terms
leads to the following equation for pressure fluctuations due
to a sound wave:

�ps

�t
= − �oc2 � · vs, �A15�

where pressure gradients have been neglected. Equations
�A7� and �A15� form a complete set of equations describing
linear acoustic propagation through an attenuating fluid or
gas.

Applying the operator � /�t to Eq. �A15� and making use
of Eq. �A7� yields the second-order equation for ps,

�2ps

�t2 = c2��2ps − 4��/3�2�� · vs� + 	��� · vs��

−
c2

�o
� �o · �ps + O��o � ���

�o
��

+ O��o � � 	�

�o
�� �A16�

where the external force f i is omitted, and the identity
� ·�2vs=�2�� ·vs� has been used. The final two terms relate
to gradients of the viscosity divided by the atmospheric den-
sity. These terms may be omitted for realistic atmospheric
density and viscosity values. So, making use of Eq. �A15�,
Eq. �A16� may be expressed as

�2ps

�t2 = c2
1 + �
�

�t
��2ps − 	

�p

�t
−

c2

�o
� �o · �ps, �A17�

where

� = 4��/�3�oc2�; 	 = 	�/�o, �A18�

so that � is in units of seconds, and 	 is in units of s−1.
Equation �A17� is the governing equation for acoustic propa-

gation through an attenuating atmosphere, although it may be
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noted that the inclusion of the term involving 	 was heuristic,
used only to yield more realistic atmospheric absorption val-
ues.
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